. RD-A161 347 PﬂRﬂLLEL GARBAGE COLLECTION WITHOUT SYNCHRONIZATION 11
0 ERHEADCU) ILLINOIS UNIV AT URBANA COMPTER SYSTEMS
! GROUP R RAN ET AL. AUG 84 CSG-37 NOQ914-84-C-0149
UNCLASSIFIED F/G 9/2

wow

- e e
AR MR

=8 Sl Sl

1.8

dAaq
EEEEEPITN,
2l =)

I.
—————
—
—_—
—_—
—_——

|

2=

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS - 1963 - 4

i - '
i i
: REPORT CSG-35 O

AUGUST, 1984

B
™~
q-
o
| © PARALLEL GARBAGE COLLECTION
T WITHOUT SYNCHRONIZATION
O OVERHEAD '
<
ASHWIN RAM
JANAK H. PATEL
o DTG
S SNovz 01085 -
e |
E“J..- E
E:.?.
=

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

REPORT R-1019 UILU-ENG 84-2213

¥% 18-85 033

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ta REPOAT SECURITY CLASSIFICATION

1. RESTRICTIVE MARKINGS

Unclassified N/A

28 SECUAITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPOAT
N/A

2n. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
N/A unlimited.

4 PERFCAMING OAGANIZATION AREPORT NUMBER(S)

R-1019 (CSG-35); UILU-ENG 84-2213

S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A

€a NAME OF PERFORMING ORGANIZATION 5o OFFICE SYMBOL
Coordinated Science Laboratory {11 applicabie)
University of Illinois N/A

7s. NAME OF MONITORING ORGANIZATION

Joint Services Electronics Program

6c. ADDRESS (City. Stacs and ZIP Coda)
1101 West Springfield Avenue
Urbana, IL 61801

70. AQORESS (Clity, State and ZIP Code)

Office of Naval Research
800 North Quincy Street

Arlington, VA

8a. NAME QF FUNDING/SPONSORING
CRGANIZATION

ab. OFsICE SYMBOL
(1f applicabie)

Joint Services Electronics Prog N/A

9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER

N00014-84-C-0149

Office of Naval Research

8c. ADORESS (City. State and ZIP Code)
800 North Quincy Street

Arlington, VA

10. SOURCE OF FUNDING NOS.

PROGRAM PRQIECT TASK WOAK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE 'Inciuae Securty Classsfication) Parallel Garbage
Collection Without Svnchronization Overhead N/A N/A N/A N/a

12. PERASQONAL AUTHOR(S)
bRao. ashwin and Pacel, Janak H.

13a TYPE OF REPORT 130, TIME COVERED
FAOM TO

achnical

14. DATE QF REPQAT /Yr. Wo.. Day/ 185. PAGE CQUNT

August 1984 17

16. SUPPLEMENTARY NQTATION

N/A

17. COSAT!I CODES
FI1€LD SROUP

SUB. GA.

¥

18. SUBJECT TEAMS /Continue on reverse if necessary and identify by block number)
symbolic processing, LISP, LISP machines, garbage

collection, parallel garbage collection

orocessors, maintaining memory consistency.

sing and for zarbage collection.

19. ABSTRACT Continue on reverse if necessary and identify by bdlock number)

Incremental garbage collection schemes incur substantial overhead which is directly
translated as reduced execution efficiency for the user.
schemes implemented via time-slicing on a serial processor also incur this overhead,
which might even be aggravated due to context switching.
examine the possibility of implementing a parallel garbage collection algorithm using
a separate processcor operating asvunchronously with the main list processor.
head in such a scheme arises from the synchronization necessary to manage the two

In this paper, we present an architecture and supporting parallel garbage collection
alzorithms designed for a virtual memory system with separate processors for list proces-
Each processor has its own primary memory; in addition,
there is a small common memory which both processors may access.

Parallel garbage collection
It is useful, therefore, to

The over-

Individual memories

20 SiISTRIGUTICON/AVAILABILITY OF ABSTRACT

UNCLASSIFE0/UNLIMITED XX SAME AS APT. _ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

32a NAME CF AESPONSIBLE INDIVICUAL

Unclassiflied
22b. TELEPWCNE NUMBER
‘Inciyde Aree Code)

22¢c. OFFICE SYMB80L

N/A

OO0 FORM 1473, 83 APR

EDITION CF 1 JAN 73 'S CBSOLETE.

]
Unclassified

SECURITY CLASSIFICATION OF ™MIS PAGE

CRACKISAS e R A R R T A L . R . S N e W W R T R T T S T TN T AT A T T T T T8 TR v w
[
| N
, SECURITY CLASSIFICATION OF THIS PAGE
—
3 !
p
=
19. ABSTRACT, continued s
o
3
swap off a common secondary memory, but no locking mechanism is required. In
particular, a page may reside in both memories simultaneously, and indeed may
be accessed and modified freely by each processor. A secondary memory controller .
ensures consistency without necessitating numerous lockouts on the pages. T
(-.
1 L
N
-
-
L.-
-
-~
-
RN
1%
v
4".
‘{

PARALLEL GARBAGE COLLECTION
WITHOUT SYNCHRONIZATION OVERHEAD

Ashwin Ram
; Janak H. Patel

i}.:; Technical Paper R-1019 (CSG-35); UILU-ENG 84-2213

Coordinated Science Laboratory

University of Illinois at Urbana-Champai o o ey

1101 West Springfield Avenue -

Urbana, Illinois 61801 NTIS CRA& :

DTIC TAB
Unannou.ced o
JuSHfication e
1984 e

By reeemenean-.-----n--..‘-—— -':C-.
v Distribution -
| . ,‘_-____._o—-’ . “1
| Availability Coces ” i
Avail a dfof
Dist \ Special .:;::

Acknowledgment: This work was supported by the Joint Services Electronics Program under Coatract NDOO14-84-C-0149.

-

Parallel Garbage Collection Without Synchronization Overhead

Ashwin Ram
Janak H. Patel

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract

Incremental garbage collection schemes incur substantial overhead which is directly translated as
reduced execution efficiency for the user. Parallel garbage collection schemes implemented via time-slicing
on a serial processor also incur this overhead, which might even be aggravated due to context switching. It
is useful, therefore, to examine the possibility of implementing a parallel garbage collection algorithm
using a separate processor operating asynchronously with the main list processor. The overhead in such a
scheme arises from the synchronization necessary to manage the two processors, maintaining memory
consistency.

In this paper, we present an architecture and supporting parallel garbage collection algorithms
designed for a virtual memory system with separate processors for list processing and for garbage
collection. Each processor has its own primary memory; in addition, there is a small common memory
which both processors may access. Individual memories swap off a common secondary memory, but no
locking mechanism is required. In particular, a page may reside in both memories simultaneously, and
indeed may be accessed and modified freely by each processor. A secondary memory controller ensures
consistency without necessitating numerous lockouts on the pages.

1. Introduction

List processing systems use dynamic Storage management techniques, and it is desirable to ease the |

burden on the user by providing automatic storage allocation and reclamation. An excellent survey of
various garbage collection algorithms can be found in [Coben81) There are two basic alternatives for
automatic reclamation of storage: reference counting and mark-and-trace methods. The reference count
method [Deutsch76] cannot detect self-referential structures inaccessible from the outside; in addition, space

and time overheads are incurred in maintaining these counts. Mark-and-trace garbage collection [Knuth73)},

on the other band, traditionally caused a complete disruption of computation while storage was reclaimed,

which could take a substantial amount of time. Attempts to distribute the garbage collection time over

useful list processing time to make it less unbearable led to incremental garbage collection algorithms

" L o b o T
TR vy wrmm——m— L s

e S 8 e & eI A S A e A S M e 2n et i St i ie g A A S A= 1 (R A AP P AN AE oA e i ad & A - e i

..........

Page 2

ey

[Deutsch76] and parallel garbage collection algorithms [Baker78, Dijkstra78, Hibino80, Lamport76,
Lieberman83, Newman82, Steele75] However, incremental schemes, as well as paralle] schemes

implemented via time-slicing on a serial computer, suffer from substantial overhead which is less noticeable

since it gets distributed over useful processing time, but annoying nevertheless. The source of the overhead
is not completely obvious; in extended virtual memory systems, the garbage collection routines could

increase page swapping by substantial amounts.

True parallel garbage collection systems dedicate a separate processor to garbage collection. While
these overcome the CPU time overhead for garbage collection, they suffer from the necessity of
synchronization between the two processors. If the processors share primary memory, they must have
exclusive access to the memory: in addition, the paging overhead caused by the garbage collector affects
directly the performance of the list processor. If the two processors maintain separate primary memories,
pages from secondary memory must be locked out from simultaneous access to avoid memory
inconsistency.

In this paper, we present an architecture and supporting parallel garbage collection algorithms
designed for a virtual memory system with separate processors for list processing and garbage collection.
Each processor has its own primary memory; in addition, there is a small common memory Which both
processors may access. [ndividual memories swap off a common secondary memory, but no locking
mechanism is required. In particular, 2 page may reside in both memories simultaneously, and indeed may
be accessed and modified freely by each processor. A secondary memory controller ensures consistency

without necessitating numerous lockouts on the pages.

2. Overview of the system

The proposed system, as shown in Figure 1, consists of two independent processors, the list processor
(LP) (often known as the mutator), and the garbage collector (GC). These processors have independent

primary memories, in which pages of a common virtual space are maintained. [n addition, there is a

peripheral processor called the disk controiler (DC), through which the LP and GC interface to the common

secondary memory. The LP and GC may work on their own local copies of the same nage of the virtual

Parallei Garbage Collection Without Syachroaization Overhead

k Page 3 .

v

-y

i

) o

M D SIS 1 Lo

weite ceod

disk

Figure 1: System architecture

address space. Swapping is done through the DC, which ensures that a page written to secondary memory
by either processor is merged with the version of the page that is aiready there (and which may have been
altered by the other processor during the time it resided in the swapping processor's primary memory). The

merging process resolves differences between the two versions of the page., and guarantees memory

consistency.

Parailel Garbage Collection Without Synchronization Overhead
- R P D T 20 TP . T

R P IR R N W ;
VAR VAL S Sl UL LY

W e

- EaPR . . ~ e "~

. LA L 4,° . e - A - . o et Lt e e e 0 e e e
Al et et et et alatalt ata LIPS O Yo LIPS PN] LA - il el el

..................
.....................

Page 4

2.1. Terminology

We adopt LISP terminology to refer to data objects and operations. The basic data object is a fixed size
list cell, or simply cell. A list cell stores two pointers, called the CAR and CDR. Lists are created by
chaining list cells into binary (spanning) trees, the leaves of Which are the atoms in the system. Primitive
operations are provided to access the pointers in a cell (CAR and CDR), test equality of two pointers (EQ),
test whether an object is an atom or a list cell (ATOM), create a new list cell with specified pointer fields
(CONS), and replace the CAR or CDR pointers in a cell (REPLACA and REPLACD respectively). Cells
are accessed by tracing the list structures starting from one of the roots in the system. A root is typically
an entry on the stack, or an atom on the OBLIST (which stores pointers to all the atoms in the system, thus
guaranteeing their accessibility and uniqueness). A cell that cannot be reached from any root is garbage,

and needs to be returned to the pool of unused cells (the free lst) so that it can be reallocated if needed.

2.2. The List Processor

The LP needs to perform basic list processing primitives on its data. These correspond to the LISP
functions CONS, CAR, CDR, RPLACA, RPLACD, EQ and ATOM. In our system, CAR, CDR, EQ and
ATOM present no particular difficulty; the interesting operations are CONS and REPLACE (which includes
RPLACA and RPLACD). CONS causes a new list cell to be allocated from the free list, and returns a

pointer to this cell. REPLACE replaces the pownter address in (one of the fields of) a cell, causing it to point

0 a cell different from the one to which it pointed before the operation (which may possibly become

garbage).

2.3. The Free List

The unallocated or free celis in the svstem are chained together in a free lisz, each pointing to the

next. New cells are allocated from thus lList, and unused cells are returned to this list after they become

garbage. The LP may request new cells via CONS at the same time as the GC is returning unused cells to .

the free list. To allow these rwo operations to be performed simultaneously, separate pointers to the head

and the tail of the free List are kept. Allocauons are done from the head, while reclaimed cells are returned

LIRS
......
-

WA aae A% Saa A e

e LR Sk Sl b Sl Sl Bants Hhash Siet Biase Jiuit el Pt aRicaiiuaal ult acue IRl A At v >y YT T YT,

Page § o

M)
a

to the tail. The head and tail pointers are kept in the common memory, and may be accessed i :Eji

simultaneously. The only case in which the LP needs to wait for the GC is when the free list runs out, i,

.

the memory is exhausted; in such a case, however, the user program is probably too large for the available

virtual space anyway.

. . et

2.4. The Garbage Collector

} The GC processor uses a basic mark-and-sweep algorithm to trace all the reachable cells in the system.

The collection is performed in two phases: N

] 1) The mark phase, in which all the reachable cells in memory are marked.

2) The reclaim phase, in which all the unmarked (and hence unreachable) cells are returned to the frée
list.
Since the GC maintains its own local primary memory, the LP need incur no overhead due to the .
computation perfom.aed by the GC. In addition, page faults caused when the GC traces through the list "

structures marking reachable cells are localized to the GC's primary memory, and do not cause swapping

overhead as far as the LP is concerned.

2.5. The Disk Controller

Since the LP and the GC maintain local copies of virtual memory pages, they could simultaneously
modif y memory contents which could ostensibly lead to inconsistency. This seeming inconsistency is easy

to resolve, however, since the manipulations performed by the LP and the GC are constrained by the very

NIRRT S BRI

definitions of their tasks. The DC has the responsibility of maintaining consistency by merging a page
when it is written out by the LP or the GC with the version that is currently on disk. The merging

operation can be performed with little overhead given appropriate hardware. _

The merging algorithm depends on whether the page is being written by the GC or the I.P; in

addition, it depends on the phase of the GC (ie, mark or reclaim). A flag for the GC's phase is therefore ' =~

3
" _\
kept in the common memory area, which is accessed on a2 mutually exclusive basis by the GC and the DC. '-'-‘3

However, the GC need access the flag only when it changes from one phase to another, a relatively

Parallel Garbage Collection Without Syachronization Overhead "

Page 6

infrequent situation, and thus there is almost no synchronization overhead due to this.

2.6. Cell colorings

List cells in the system are colored to indicate their status. We need two bits per cell to store the

color. These are assigned as follows:
Green: A c2ll which is on the free list is unallocated, and is colored green.
Black: A black cell is known 10 be accessitie from one of the roots in the system.

Yellow: During the mark phase of the GC, cells that have been reached but have yet to be traced or

explored further are colored yellow.

White: During the reclaim phase of the GC, cells that are white are inaccessible and therefore garbage.

3. Algorithms for the processors

We now develop the algorithms used by the three processors, and indicate how they interact.

Extensions to the basic algorithms to improve performance will be treated in the next section.

3.1. The List Processor

As mentioned above, the primitive list operations that the LP needs to perform are CONS, CAR, CDR,
REPLACA, REPLACD, EQ and ATOM. Since the GC performs no relocation, CAR, CDR, EQ and ATOM

present no dificulty. We now consider CONS and REPLACE (RPLACA and RPLACD) in detail.

3.1.1. The CONS primitive

The CONS function gets an unused cell from the free list and returns a pointer to this cell. To do
this, it gets the next green cell, following the free list head pointer. This cell is blackened to mark it as

being reachable, and the free list head pointer is updated to point to the next free cell on the list.

To avoid synchronization conflicts with the GC (which may be returning cells to the free list), we
allocate cells from the head of the free list and return reclaimed cells to the tail of the free list. The head

and tail pointers can be accessed independently. The only situation in which the LP needs to wait for the

Parallei Garbage Collection Without Syachronization Qverhead

GC is when the free list is empty, which is obviously unavoidable.

3.1.2. The REPLACE primitives

A REPLACE operation modifies one of the pointers in a cell X to point to another cell Z. The cell that

was originally pointed to may become garbage as a result of this operation.

If the GC.is in the mark phase, the cell Z should be marked as being reachable. If Z is already black,
nothing need be done, otherwise it should be marked yellow (since it may need to be traced further). The
LP must also indicate to the GC that it needs to trace the cell further. There are several ways in which
this could be implemented. The simplest method is to set a rescan fiag, and to let the GC continually scan
the memory until there is no rescan request. This process will eventually halt as all the reachable cells g;t
colored black. Modifications of this algorithm to reduce rescanning and page faults are examined in the

next section.

If the GC is in the reclaim phase, Z would already have been marked as being reachabie. If the page
Z lies on has already been processed by the GC, it would have been marked white, otherwise it would be
black (this is explained in the next section). In either case, the LP does not need to alter the color of Z. The :
LP could check which phase the GC is in (thus avoiding the need to access Z in the reclaim phase), but this ._1
would require a2 mutuaily exclusive access to a common flag. Since the LP and DC require read-only access ::.j-'
0 this flag, we need only ensure that neither reads the flag while the GC is altering it. This is guaranteed
with current memory technology since it provides indivisibie reads and indivisible writes. The GC changes - - §

from one phase 0 another only at long intervals, and therefore this would cause negligible overhead.

3.2. The Garbage Collector S 4

The GC is a separate processor dedicated to the task of garbage collection. It has its own primary

i
s

memory; in addition, it can access the common memory. The GC continually cycles through two phases,

R SR

the mark phase and the reclaim phase. There is a flag in the common memory which indicates the phase

that the GC is in (as described in the previous section).

’ - - »
L A e T .
20 e A

[N
a2 fhem Za

- LRSS min 2 e ngs dends s Shull Sendh R Shah Mg St Gt abedh el S
. Aae ame e o T ——— g CRPRCRR R v o . - -

Page 8

3.2.1. Mark Phase

In the mark phase, the GC scans the memory linearly looking for reachable cells. At the outset, all
cells are colored white, except for the cells on the free list which are green. To start off, all the roots in the
system, i.e., cells which are directly reachable, such as atoms in the oblist and stack variables, are marked

‘ yellow. The GC then scans the memory linearly from top to bottom, looking for yellow cells. From each
yellow cell, the GC traces the list structure recursively, terminating its scan whenever it reaches the end of
the list or a cell that has already been marked black. Each cell thus visited is marked black. The GC

continues this linear scan of the memory as long as the rescan flag is set, taking care to reset the flag before

each scan.

L At this point, there are no yellow cells in secondary memory, since they have all been explored and

marked black. However, the LP could have yellow cells in its own primary memory on pages that had not

been written out to disk after the cells were colored yellow. The list structures starting at these cells must

also be traced. To do this, the GC now scans the LP’'s memory looking for yellow cells. Starting at the 1'
addresses of these yeilow cells, the GC traces the list structures within its own memory, marking them
black as before. If in this time the LP writes out a yellow cell to disk (detected by the DC), the cell will

have t0 be traced further in the usual way. In a naive scheme this involves another iteration of both parts

of the mark phase.

In the next section, we explore some alternative schemes with the intention of eliminating

)

unnecessary rescans, as well as reducing the page faults incurred by the GC during the marking process.

R oy
: e
PR RV S TS IO P YO W W WO SN T W WG W

3.2.2. Reclaim Phase N

3 el .
P O]

In the reclaim phase, the GC scans the memory linearly from top to bottom, looking for white cells, R
which did not get marked during the mark phase. These cells are colored green and returned to the tail of

the free list. All other cells are either reachable or known to be on the free list, and hence would be either

A N
T I
o e

PUORIPG Y S SN

black or green after the mark phase. The black cells are colored white in preparation for the next GC

cycle: the green cells are left unaltered. The GC should ensure it scans a page completely before it returns B

it to disk.

Page 9

After the reclaim phase is over, the GC must write out all its pages to disk, so that any changes made
within the GC's local memory are actually recorded before it switches to the mark phase of the next

garbage collection cycle.

3.3. The Disk Controller

When a page is written to disk by either processor, the DC maintains memory consistency by reading
the page from the disk and merging the colors before writing it back to the disk. This could be done using
a fast buffer; as an alternative, we could use a disk with two heads, the write head being positioned some
distance after the read head. In this case, the DC would read the data as it passed under the read head,
merge it with the new data being written out, and write it back to disk as the sector passed under the
write head, without any overhead being caused by this operation in comparison with a normal write.

3 Since the merge requires very little processing, this implementation is feasible.

The color of the merged ceil depends on the color of the corresponding cell on disk (the old ceil) as o
well as on the color of the new cell being written out. It also depends on which processor (the LP or the
GC) is doing the writing, and which phase the GC is in (since that determines the meaning of the colors).
The DC needs read-only access to the GC phase flag, which as discussed earlier causes negligible overhead.

It should also be noted that all combinations of colors are not encountered since they are constrained by the

very nature of the tasks of the processors. This is explained further in the following sections.

3.3.1. Mark Phase | "]

When the GC is in the mark phase, only the following color changes can occur. The LP can color)
cells black if they were originally green (during the CONS operation), and yellow if they were originally =1

white (during the REPLACE operations). The GC can only blacken cells that were originally white or

vellow.

P TR

»

f &
A .' l- l‘ P ST
ICICP PN SIASA A

L

33.1.1. Page received From LP

The LP can color only green cells black; thus, if a black cell is received from the LP, it must either

have been black already (no merging needed), or alternatively it could have been a green cell on the free

Parailel Garbdage Collection Without Syachroni.ation Overhe. ... ")

om0 Ak e 20 Al dh g Ja i Sl Jui Sst iaish Sk LRl SRR v At et Bt el il

.......................

£ Page 10

list which has now been allocated, in which case it should be colored black. Thus when a black cell is

written back, the merged cell is black.

A white cell received from the LP must have been white when the LP read it (since the LP never

- colors anything white); the old ¢!l on disk can only be white (untouched) or black (having been colored
k black in the meantime by the GC). In either case, the color of the old cell is taken as the color of the
merged cell.

g If a green cell is received from the LP, the corresponding cell on the disk must also be green, and no
merging is needed.

‘ If a yellow cell is received from the LP, there are several possibilities. If the corresponding cell on the
L disk (the old cell) is white, it must have been white when the LP read the page and have been colored

[-' yellow by the LP; in this case, the merged cell should be yellow. If the old cell is black, it could have been

either white or yellow when the LP read the page, having been blackened by the GC in the meantime; in
this case, the merged cell should be black. The only other possibility is that the cell was originally yellow

and still is; the merged cell in this case is obviously yellow.

This can be summed up in the following table, where blank entries correspond to impossible

combinations of colors:

| Color of merged cell | g
Color of new ceil in LP's page: || Black | White | Green | Yellow o

Color of old cell on disk:
Black || Black | Black

White i

Green

Yellow

}

PN N
ddidnd Ao Al

.
P

The DC, finally, needs to implement only the following rules, which can easily be done by a logical

N

-\ J

circuit: *
1. Black merged over any other color results in black. :.:.

2. Any color merged over black results in black. N

3. Yellow merged over white results in yellow. 1

Paralle] Garbdage Collection Without Syachronization Overhead

Al nduin Bete i St b St Sedh Bl St At Al Sl A Sl S) ol AT A S A)

Page 11 T

The other function performed by the DC is the detection of yellow cells being written out by the LP

while the GC is scanning the LP’s memory, as explained earlier.

3.3.1.2. Page Received From GC

In the mark phase, the GC can only color cells black that were originally white or yellow. Other
differences found in the colors are therefore due to the LP. If the cell received from the GC is yellow, the

corresponding cell on the disk must be yellow too, and no merging is needed in this case.

If a black cell is received from the GC, the cell could originally have been black, white (and since
then traced by the GC, possibly yellowed meanwhile by the LP) or yellow (and since traced by the GC).
In either case, the merged cell should be black.

A white cell received from the GC may originally have been white, in which case it stays white, or

yellow, in which case the LP has colored it yellow after the GC read the page. In the latter case, the j:_'.:
merged cell should be yellow. >
If a green cell is received from the GC, it must originally have been green. The corresponding cell in
memory at this time, therefore, would still be green unless the LP has in the meantime requested this cell .
(via a CONS) and colored it black. In the former case, the merged cell stays green; in the latter case, the .
merged cell is black. .*:
This can be summed up in the following table: 3
Color of merged cell] N
Color of new cell in GC's page: || Black | White | Green | Yellow e
Color of old cell on disk: | ‘ -
—— 3
Black Black i
White || Black | White
Green Green .
Yellow || Black | Yellow Yellow e
»
A

This can be implemented by the DC by a logical circuit realizing the following rules:

1. Black merged over any other color results in black.
2. Any color merged over black results in black.

Paraile] Garbage Collection Without Synchronization Overhead

.................
.......................
.

4

Page 12

3. White merged over yellow results in yellow.

3.3.2. Reclaim Phase

In a similar manner, the merging rules for the reclaim phase of the GC can be formulated. The tables
k describing these rules are:

3.3.2.1. Page Received From LP

! Color of merped cell
. Color of new cell in LP’s page: || Black | White | Green | Yellow

3.3.2.2. Page Received From GC

Recall that during the reclaim phase, once the GC has started coloring biack cells white and white

cells green in a certain page, it must complete the operation on that page before returning it to the disk.

} Color of merged cell ’
Color of new cell in GC's page: || Black | White | Green | Yellow

— |
White
Green
Green

3.3.3. Merging revisited

We have presented rules for merging the colors of the new cells being written back to disk with the
colors of the corresponding cells already on disk. All these rules can collectively be implemented as a

logical operation on the color of the cell being received, the color of the corresponding cell on disk, the

Parallel Garbage Collection Without Syachronization Overhead

Page 13

processor writing out the page, and the phase of the GC.

We also need to consider the merging of the data in the cells, ie., the pointers in the CAR and CDR
fields of the cells. It is easy to figure out which of the cells, the old cell on the disk or the new one being
written out, contains the correct data to be placed in the merged cell. The only time the GC changes the
data in a cell is when it colors a white cell green and adds it to the free list during the reclaim phase, thus
making the green cell which was previously on the end of the free list point to this one. When the GC
writes this green cell back to disk, it finds either a white or a green cell there (depending on when this cell
was reclaimed). In either case, the merged cell should get its data from the new cell. In all other cases, the
old cell will either have the same data as the new cell, or would have been modified by the LP after the

page was read by the GC. The merged cell, then, would get the data from the old cell.

When a page is written out by the LP, a similar argument holds. When it writes out a white cell
over a green cell in the GC's reclaim phase, the old cell has the correct data. In other cases, the pew cell

will have the correct data to be put into the merged cell.

4. Extensions and modifications

Since the disk is a shafsZ I:mited-bandwidth resource, excessive page faults in the GC would
eventually reduce the performance of the LP. It is desirable, therefore, to design the GC algorithms with a

view towards minimizing the page fauit rate as far as possible. Further, we would like the GC to be, on

the average, “faster” in some sense than the LP, so that garbage is reclaimed faster than it is generated.

Reducing the GC’s page fault rate helps in this respect; in addition, unnecessary rescanning of memory
during the GC’s mark pbase should be eliminated if possible. In this section, we explore some extensions
and modifications to the basic algoritbms presented above in order to improve further the performance of
the system.

4.1. Eliminating unnecessary rescans

In the mark phase, the GC scans the memory linearly looking for yellow nodes wWhich need to be

traced further. When the LP replaces a pointer in a cell X to point to another cell Z, it colors Z vellow and

Parailel Garbage Jollection Without Synchronization Overhead

I TPy]

L Pu I Ste st A S gl aedl Sl gt il M Sl g Bod

Page 14

requests a rescan by setting the rescan flag. However, if Z lies on a page that has not yet been scanned by
! the GC, it will eventually be taken care of anyway when the GC gets to that page, and hence the rescan

request flag need only be set if Z lies on a page that the GC has already scanned.

Another alternative is to maintain a separate table for the addresses of the cells which need further

r examination. In this scheme, a cell is treated as being yellow if it is colored yellow or if it appears in this

yellow table. The yellow table can be a fixed size high speed memory, preferably a content-addressable
(associative) memory. The GC would examine this first to look for yellow cells which need to be traced
before scanning the memory linearly. If the table fills up, the original scheme (mark the cell yellow and
set the rescan flag) is resorted to until the table has vacancies again. Care should be taken that the table
manipulation does not cause the LP any overhead. Since the table is shared by the LP and the GC,
mutually exclusive access needs to be guaranteed, and this scheme may actually be worse as far as the LP is
concerned due to this. However, in the yellow table method, the LP doesn’t need to access the cell Z itself,

as it would if it were to color it yellow. If Z lies on a page which is not currently in primary memory,

the coloring process would cause a page fault. If Z is used soon after the REPLACE, this fault does not)
: incur too much overhead, but otherwise the yellow table method is superior in this regard. Dynamic
measurements would be useful in judging the comparative utility of these schemes; measurements :‘:~
performed in [Clark 77, Clark79] help but are insufficient for the current purpose. \j
3 After scanning the disk completely in the mark phase, the GC, as explained earlier, must scan the LP’s :f-j
memory looking for yellow cells that were never written out to disk (which, therefore, the GC did not -_11
know about). The GC needs only to get the addresses of these cells, after which it traces the list structures
from these cells within its own memory. During this scan, the LP may write out a yellow cell to disk. *l
- The DC must detect this and request a disk rescan if this is so. To avoid rescanning the entire disk, the DC H
A can save the address of the yellow cell being written out in a table (the yellow table described above :i
would suffice). A disk rescan is then requested only if this table is full The table size can be substantially 5‘1
reduced by saving only the page number of the page being written out rather than the entire address of the 1
yellow cell. The GC then has to scan this page to find the vellow cell, but this does not cause any extra ‘

Parallel Garbage Collection Withoat Syachronization Ov.rhead o L

Page 15
page faults,

4.2. Reducing disk contention ' N

As mentioned above, the disk is a shared limited-bandwidth resource, and therefore it is desirable to
reduce disk contention by reducing the page faults incurred by the GC. During the mark phase, the GC
traces down list structures which could be scattered through memory. In the basic scheme presented above,
the GC follows these structures down till the ends of the lists. If a part of the structure being recursively
traced lies on a different page, that page will have to be brought in to the GC's primary memory. While
the GC has this page, it could as well examine the entire page rather than look only at the yellow cells
which are part of the list it was originally tracing. Put another way, all the cells in the pages currently in
the GC’s primary memory should be examined and traced as far as possible within these pages. If a yellow
cell points out to a page not currently in primary memory, it is colored black as usual, but the cell it points
to is not brought in; instead, its address is stored in a table, and the GC continues tracing other yellow cells :
within 'xis primary memory. When no yellow cells remain, the pointers stored in the table are traced -

further by bringing in their respective pages. :
4.3. Alternative free list organizations

The unallocated or free cells in the system are chained together in a free list, each pointing to the

r.

ij'.j next. When the LP needs a new cell during the CONS operation, it has to get the next green cell from the -

I head of the free list. This cell, however, may lie on a different page from the one the LP is curreatly
¥

working on, and on the average this increases the page faults incurred by the LP. In addition, lists built up

this way tend to be scattered through memory, which increases the number of page faults both when they
. are used by the LP as well as when they are traced by the GC. To improve the locality of pointers in the :
- system, we present an alternative organization for the free list. *
.

E. Instead of maintaining one free list for all the free cells, it is possibie to keep a separate free list for

each page of memory. The head and tail of a page’s free list are kept in the page header. New cells 2

requested via CONS are allocated from the head of the free list of the current page, and reclaimed cells are

‘
-

Parallel Garbage Collection Without Syachronization Overhead ::

A 20 o e & o aree 4 PP — B aar e ama Sn e N aie i At ek e Y kg LA Skl Snd S0 Bed el Sng and e o s AU ol SaaE SR SNE

Page 16

returned to the tail of the free list of the page they lie in. Since we do not want to lock pages out from
simultaneous access by the GC and the LP, only the free list head and tail pointers are kept, not its size. To
avoid inconsistency, the free list has a dummy header which is never allocated. The CONS algorithm, then,
allocates a cell from the current page unless the head and tail pointers are equal. In this case the free list is
empty, and a free cell needs to be allocated from another page. This page could be the next page already in
primary memory, or the next page according to sequential number, or, w0 avoid élustering of full pages

during execution, a page chosen at random.

Returning reclaimed cells to the tail of the free list poses no particular difficulty. The merging
algorithm, however, must ensure that the free list head and tail pointers within page headers are merged

correctly. This is a simple extension to the merging rules presented earlier.

S. Conclusion

We have presented a design for a parallel garbage collection scheme in an extended virtual memory
environment which almost completely eliminates synchronization overhead. The garbage collection is done
by a dedicated processor with a separate primary memory, leaving the list processor to perform its own
task. A disk controller maintains memory consistency in situations where the list processor and garbage
collector simultaneously modify their local copies of the same pag!. The main advantages of the proposed
scheme is that the list processor does not incur overhead due to garbage collection, either directly (sharing
CPU cycles, for example) or indirectly (increased page fault rate due to swapping necessitated by the

garbage collector’s trace through the list structures in memory).

e e
ol Wt N
NP Bl W Sy

H IR

S tuls

PP
s

{Baker78)
[Clark77]

{Clark 79]

[Cohen81]

[Deutsch76]

[Dijkstra78]

[Hibino80]

[Kauth73]

(Lamport76]

[Lieberman83]

[Newman82]

(Steele75]

...............................

References

H. G. Baker, "List Processing in Real Time on a Serial Computer,” Communications of the
Association for Computing Machinery 21, 4 (April 1978), 280-294.

D. W. Clark and C. C. Green, "An Empirical Study of List Structure in Lisp,”
Communications of the Association for Computing Machinery 20, 2 (Feb 1977), 78-87.

D. W. Clark, "Measurements of Dynamic List Structure Use in Lisp,” Instituze of
Elcc:)r"lcd and Electronics Engineers transactions on Software Engineering SE-5, 1 (Jan
1979), 51-59. g

J. Cohen, "Garbage Collection of Linked Data Structures,” Computing Surveys 13, 3 (Sept
1981), 341-367.

L. P. Deutsch and D. G. Bobrow, "An Efficient, Incremental, Automatic Garbage Collector,”
Communications of the Association for Computing Machinery 19, 9 (Sept 1976), 522-
526.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Sholten and E. F. M. Steffens, "On-The-Fly
Garbage Collection: An Exercise in Co-operation,” Communications of the Association for
Computing Machinery 21, 11 (Nov 1978), 966-975.

Y. Hibino, "A Practical Parallel Garbage Collection Algorithm and its Implementation,”
Proceedings of the Seventh Annual Symposium on Computer Architecture, May 1980,
113-120.

D. E. Knuth, The art of computer programming, vol. I: Fundamental algorithms,
Addison-Wesley, Reading, MA, 1973.

L. Lamport, "Garbage Collection with Multiple Processess An Exercise in Parallelism,”
Proceedings of the Institute of Electrical and Electronics Engineers International
Con ference on Parallel Processing, 1976, 50-54.

H. Lieberman and C. Hewitt, "A Real-Time Garbage Collector Based on the Lifetimes of
Objects,” Communications of the Association for Computing Machinery 26, 6 (June
1983), 419-429.

L A. Newman and M. C. Woodward, "Alternative Approaches to Multiprocessor Garbage
Collection,” Proceedings of the Institute of Electrical and Electronics Engineers
International Con ference on Parallel Processing, Aug 1982, 205-210.

G. L. Steele, "Multiprocessing Compactifying Garbage Collection,” Communications of the

Association for Computing Machinery 18,9 (Sept 1975), 495-508.

e Saase Samte nash et 4 b RSN Jaalh Snse Shaduamte - mack Sk -sngnes

~v
e,

]

RY
Ca
N

i e
ot g et

=y =y T4 e

o]

»
Aod

v'ﬁﬁ-w

